Pain stimulation by using Synchronised Somatosensory Evoked Potentials (SSEPs) and Contact Heat Evoked Potentials (CHEPs)

Debatisse D., Marcucci C., Villemure J.G., Sphan D., Pralong E. CHUV, 1011 Lausanne, Nov. 2006

Introduction/Objective

SSEPs evaluate conduction of non-painful stimuli over large A-beta fibers. Nociceptive stimuli generate action potentials conducted in thinner A-delta and C fibers. These fibers are characterized by slower conduction velocities and can be evaluated by CHEPs. We verified the feasibility of synchronized SSEPs and CHEPs in normal subjects, in order to create a new electrophysiological tool for clinical use.

Methods

- 20 healthy normal subjects were investigated (10 females/10 males, age 25 ± 7 and height 176 ± 7 cm). SSEPs were triggered at the right posterior tibial nerve (8 ± 3 mA). Synchronised CHEPs were induced at the right S1 dermatome with a thermocouple at 52° C (250 msec stimulus duration, 15 sec inter stimulus interval, total number of stimuli: 90). Visual Analogue Scale (VAS) was obtained at the first stimulus and every 3 min thereafter. Acquisition of evoked potentials were acquired on Fz (A1-A2) and CPz (A1-A2) derivations.

Results

- SSEPs induced a P45 (48.1 ± 4.1)/N60 (56.5 ± 5.1) potential and CHEPs induced a N550 (564 ± 105 ms) and a P650 (670 ± 121 ms) potential with a topography on Cz-Pz location (Figure 1 and 3).
- Correlation analysis:
 1. N1 and P1 amplitudes were correlated (p<0.01).
 2. N1-P1 amplitudes did not change over time.
 3. VAS scores decreased from 33.2 ± 20.9 mm to 19.5 ± 12.9 mm (p<0.01) (Figure 2).
 4. The VAS scores were not correlated with N1-P1 amplitudes.
 5. There was no correlation between P45 and N1-P1 amplitudes.

Discussion/Conclusions

This study confirms the feasibility of recording SSEPs and CHEPs using concomitant stimulation. CHEPs induces a late N1-P1 component at 550 and 650 ms in Fz and CPz that may reflect A-delta fibres activation. While VAS decreases with time, CHEPs and SSEPs amplitudes remain constant. These results suggest that pain perception is a “cognitive process” that is not solely dependent on pain evoked potential amplitude.